Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 11: 511, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670299

RESUMO

Improving marketability and extension of vase life of cut flowers has practical significance for the development of the cut flower industry. Although considerable efforts have been made over many years to improve the vase life of cut flowers through controlling the immediate environment and through post-harvest use of floral preservatives, the impact of lighting environment on vase life has been largely overlooked. In the current study, the effect of three LED light spectra [white (400-730 nm), blue (peak at 460 nm), and red (peak at 660 nm)] at 150 µmol m-2 s-1 on vase life and on physiological and biochemical characteristics of carnation cut flowers was investigated. Exposure to blue light (BL) considerably delayed senescence and improved vase life over that of flowers exposed to red light (RL) and white light (WL). H2O2 and malondialdehyde (MDA) contents in petals gradually increased during vase life; the increase was lowest in BL-exposed flowers. As a consequence, BL-exposed flowers maintained a higher membrane stability index (MSI) compared to RL- and WL-exposed flowers. A higher activity of antioxidant enzymes [superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX)] was detected in petals of BL-exposed flowers, compared to their activities in RL- and WL-exposed flowers. In BL-exposed flowers, the decline in petal carotenoid contents was delayed in comparison to RL- and WL-exposed flowers. Maximum quantum efficiency of photosystem II (Fv/Fm) and a higher percentage of open stomata were observed in leaves of BL-exposed flowers. Sucrose and glucose contents accumulated in petals during vase life; sugar concentrations were higher in BL-exposed flowers than in RL- and WL-exposed flowers. It is concluded that BL exposure improves the vase life of carnation cut flowers through its effect on the antioxidant defense system in petals and on photosynthetic performance in the leaves.

2.
Physiol Mol Biol Plants ; 25(3): 741-752, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31168236

RESUMO

Light spectrum of growing environment is a determinant factor for plant growth and photosynthesis. Plants under different light spectra exhibit different growth and photosynthetic behaviors. To unravel the effects of light spectra on plant growth, photosynthetic pigments and electron transport chain reactions, purple and green basil varieties were grown under five different light spectra including white (W: 400-730 nm), blue (B: 400-500 nm), red (R: 600-700 nm) and two combinations of R and B lights (R50B50 and R70B30), with same PPFD (photosynthetic photon flux density). Almost all values for shoot and root growth traits were higher in purple variety and were improved by combinational R and B lights (especially under R70B30), while they were negatively influenced by B monochromatic light when compared to growth traits of W-grown plants. Highest concentration of photosynthetic pigments was detected in R70B30. Biophysical properties of photosynthetic electron transport chain showed higher florescence intensity at all steps of OJIP kinetics in plants grown under R light in both varieties. Oxygen evolving complex activity (Fv/Fo) and PSII maximum quantum efficiency (Fv/Fm) in R-grown plants were lower than plants grown under other light spectra. Values for parameters related to specific energy fluxes per reaction center (ABS/RC, TRo/RC, ETo/RC and DIo/RC) were increased under R light (especially for purple variety). Performance index was significantly decreased under R light in both varieties. In conclusion, light spectra other than RB combination, induced various limitations on pigmentations, efficiency of electron transport and growth of basil plants and the responses were cultivar specific.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...